skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wilf, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseAraliaceae comprise a moderately diverse, predominantly tropical angiosperm family with a limited fossil record. Gondwanan history of Araliaceae is hypothesized in the literature, but no fossils have previously been reported from the former supercontinent. MethodsI describe large (to macrophyll size), palmately compound‐lobed leaf fossils and an isolated umbellate infructescence from the early Eocene (52 Ma), late‐Gondwanan paleorainforest flora at Laguna del Hunco in Argentine Patagonia. ResultsThe leaf fossils are assigned to Caffapanax canessae gen. et sp. nov. (Araliaceae). Comparable living species belong to five genera that are primarily distributed from Malesia to South China. The most similar genus is Osmoxylon, which is centered in east Malesia and includes numerous threatened species. The infructescence is assigned to Davidsaralia christophae gen. et sp. nov. (Araliaceae) and is also comparable to Osmoxylon. ConclusionsThe Caffapanax leaves and Davidsaralia infructescence, potentially representing the same source taxon, are the oldest araliaceous macrofossils and provide direct evidence of Gondwanan history in the family. The new fossils and their large leaves enrich the well‐established biogeographic and climatic affinities of the fossil assemblage with imperiled Indo‐Pacific, everwet tropical rainforests. The fossils most likely represent shrubs or small trees, adding to the rich record of understory vegetation recovered from Laguna del Hunco. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  2. Abstract Caldera lake sediments of the early Eocene Tufolitas Laguna del Hunco (Chubut Province, Argentina) host one of the world’s best-preserved and most diverse fossil plant assemblages, but the exceptional quality of preservation remains unexplained. The fossils have singular importance because they include numerous oldest and unique occurrences in South America of genera that today are restricted to the West Pacific region, where many of them are now vulnerable to extinction. Lacustrine depositional settings are often considered optimal for preservation as passive receptors of suspended sediment delivered, often seasonally, from lakeshores. However, caldera lakes can be influenced by a broader range of physical and chemical processes that enhance or decrease fossil preservation potential. Here, we use Laguna del Hunco to provide a new perspective on paleoenvironmental controls on plant fossil preservation in tectonically active settings. We establish a refined geochronological framework for the Laguna del Hunco deposits and present a detailed history of processes active during ∼ 200,000 years of lake filling from 52.217 ± 0.014 Ma to 51.988 ± 0.035 Ma, the time interval that encompasses nearly all fossil deposition. Detailed facies analysis shows that productive fossil localities reside within high-deposition-rate beds associated with high-energy density flows and wave-reworked lake-floor sediments, challenging traditional views that low-energy environments are required for well-preserved plant fossils. These results demonstrate that even delicate fossil components like fruits and flowers can survive high-energy transport, underscoring the importance of rapid burial as a primary control on fossil preservation. Short, steep sediment-transport networks may facilitate terrestrial fossil preservation by limiting opportunities for biochemical degradation on land and providing relatively frequent, high-energy depositional events, which quickly transport and bury organic material following events such as landslides from steep, wet, surrounding slopes. Our new model for plant taphonomy opens a path toward finding and understanding other exceptional biotas in environments once considered unlikely for preservation. 
    more » « less
    Free, publicly-accessible full text available April 23, 2026
  3. Summary The tall eucalypt forests (TEFs) of the Australian tropics are often portrayed as threatened by ‘invasive’ neighboring rainforests, requiring ‘protective’ burning. This framing overlooks that Australian rainforests have suffered twice the historical losses of TEFs and ignores the ecological and paleobiological significance of rainforest margins. Early Eocene fossils from Argentina show that biodiverse rainforests with abundantEucalyptusexisted > 50 million years ago (Ma) in West Gondwana, shaped by nonfire disturbance factors such as landslides and volcanic flows. Humid volcanic environments with eucalypts were also present in eastern Australia over much of the Cenozoic. The dominance of fire‐adapted eucalypts appears to be geologically recent and is linked to Neogene C4grassland expansion, Pleistocene climate cycles, and human activity. We suggest that characterizing TEFs and rainforests as adversarial results from misinterpreting the evolutionary history and expansion‐contraction dynamics of a single humid forest system, whose features are now heavily modified by human activities. The resulting management practices damage the outstanding World Heritage values and carbon storage of affected areas and thus have impacts far beyond Australia. The fossil evidence shows that rainforest margins preserve ancient, still evolving, and globally significant forest interactions that should be prioritized for restoration and research. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. Abstract PremiseAsia's wet tropical forests face a severe biodiversity crisis, but few fossils record their evolutionary history. We recently discovered in situ cuticles on fossil leaves, attributed to the giant rainforest treeDryobalanopsof the iconic Dipterocarpaceae family, from the Plio‐Pleistocene of Brunei Darussalam (northern Borneo). Studying these specimens allowed us to validate the generic identification and delineate affinities to living dipterocarp species. MethodsWe compared the leaf cuticles and architecture of these fossil leaves with the seven livingDryobalanopsspecies. ResultsThe cuticular features shared between the fossils and extantDryobalanops, including the presence of giant stomata on veins, confirm their generic placement. The leaf characters are identical to those ofD. rappa, an IUCN red‐listed Endangered, northern Borneo endemic. TheD. rappamonodominance at the fossil site, along withDipterocarpusspp. leaf fossils, indicates a dipterocarp‐dominated forest near the mangrove‐swamp depocenter, most likely in an adjacent peatland. ConclusionsTheDryobalanops rappafossils are the first fossil evidence of a living endangered tropical tree species and show how analysis of in situ cuticles can help illuminate the poorly known floristic history of the Asian tropics. This discovery highlights new potential for fossils to inform heritage values and paleoconservation in Southeast Asia. 
    more » « less
    Free, publicly-accessible full text available May 8, 2026
  5. Two silicified fossil woods are identified as a new species of Laurinoxylon from the Huitrera Formation at Laguna del Hunco in the Chubut Province of Argentina. Supporting characters include the absence of growth ring boundaries, vessels solitary or in short radial multiples, simple and scalariform perforation plates, alternate intervessel pitting, scalariform vessel-ray pits, scarce axial parenchyma, septate fibres, rays usually one to four cells wide, and idioblasts commonly associated with rays and rarely with the axial parenchyma. The fossil woods resemble members of the Perseae-Cinnamomeae-Laureae clade but do not closely match any extant genus; they therefore probably represent an extinct lineage. Although lauraceous woods are known from other Palaeocene and Eocene floras in Patagonia, the presence of the family at Laguna del Hunco was previously based only on leaf compressions without preserved cuticular details. Our new record confirms the occurrence of Lauraceae in the diverse Laguna del Hunco flora, which contains many genera associated with extant rainforest floras. 
    more » « less
  6. Abstract PremiseFossil infructescences and isolated fruits with characters of Malvoideae, a subfamily of Malvaceae (mallow family), were collected from early Eocene sediments in Chubut, Argentina. The main goals of this research are to describe and place these fossils systematically, and to explore their biogeographical implications. MethodsFossils were collected at the Laguna del Hunco site, Huitrera Formation, Chubut, Patagonia, Argentina. They were prepared, photographed, and compared with extant and fossil infructescences and fruits of various families using herbarium material and literature. ResultsThe infructescences are panicles with alternate arrangement of fruits. They bear the fruits on short pedicels that are subtended by a bract; the fruits display an infracarpelar disk and split to the base into five ovate sections interpreted as mericarps. Each mericarp is characterized by an acute apex and the presence of a longitudinal ridge. The isolated fruits show the same features as those on the infructescences. The fossils share unique features with members of the cosmopolitan family Malvaceae, subfamily Malvoideae. ConclusionsThe fossils have a unique combination of characters that does not conform to any previously described genus, justifying the erection of a new genus and species,Uiher karuen. This new taxon constitutes the first known Malvoideae reproductive fossils of the Southern Hemisphere, expanding the distribution of Malvoideae during the early Eocene. 
    more » « less
  7. Abstract Marine sedimentary rocks of the late Eocene Pagat Member of the Tanjung Formation in the Asem Asem Basin near Satui, Kalimantan, provide an important geological archive for understanding the paleontological evolution of southern Kalimantan (Indonesian Borneo) in the interval leading up the development of the Central Indo-Pacific marine biodiversity hotspot. In this paper, we describe a moderately diverse assemblage of marine invertebrates within a sedimentological and stratigraphical context. In the studied section, the Pagat Member of the Tanjung Formation records an interval of overall marine transgression and chronicles a transition from the marginal marine and continental siliciclastic succession in the underlying Tambak Member to the carbonate platform succession in the overlying Berai Formation. The lower part of the Pagat Member contains heterolithic interbedded siliciclastic sandstone and glauconitic shale, with thin bioclastic floatstone and bioclastic rudstone beds. This segues into a calcareous shale succession with common foraminiferal packstone/rudstone lenses interpreted as low-relief biostromes. A diverse trace fossil assemblage occurs primarily in a muddy/glauconitic sandstone, sandy mudstone, and bioclastic packstone/rudstone succession, constraining the depositional setting to a mid-ramp/mid to distal continental shelf setting below fair-weather wave base but above storm wave base. Each biostrome rests upon a storm-generated ravinement surface characterized by a low-diversityGlossifungitesorTrypanitestrace fossil assemblage. The erosional surfaces were colonized by organisms that preferred stable substrates, including larger benthic foraminifera, solitary corals, oysters, and serpulid annelid worms. The biostromes comprised islands of high marine biodiversity on the mud-dominated Pagat coastline. Together, the biostromes analyzed in this study contained 13 genera of symbiont-bearing larger benthic foraminifera, ~40 mollusk taxa, at least 5 brachyuran decapod genera, and 6 coral genera (Anthemiphyllia,Balanophyllia,Caryophyllia,Cycloseris,Trachyphyllia, andTrochocyathus), as well as a variety of bryozoans, serpulids, echinoids, and asterozoans. High foraminiferal and molluscan diversity, coupled with modest coral diversity, supports the hypothesis that the origin of the diverse tropical invertebrate faunas that characterize the modern Indo-Australian region may have occurred in the latest Eocene/earliest Oligocene. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  8. Premise of research. The Neogene collision of the Australian tectonic plate (Sahul) with Southeast Asia (Sunda) restructured the vegetation of both regions. The rarity of plant macrofossils from Sunda has limited the understanding of precollision vegetation and plants that migrated from Sunda to Sahul. Despite the importance of legumes in the living flora, no Malesian reproductive or pre-Neogene fossils of the Fabaceae are known.Methodology. We collected 47 plant macrofossils from the Tambak Member of the Tanjung Formation (middle-late Eocene) while surveying the Wahana Baratama coal mine near Satui, South Kalimantan, Indonesian Borneo. These fossils represent Southeast Asian forests before the Sahul-Sunda collision. We studied three isolated large (up to 72 mm in length) seeds from the upper Tambak Member, along with 43 fossil leaves and two palynological samples from the lower Tambak Member.Pivotal results. We describe the extinct legume Jantungspermum gunnellii gen. et sp. nov. The J. gunnellii seeds are flattened on one side, bilobed, and heart shaped with a long hilum (~60 mm) overlain on the suture, closely resembling Castanospermum, the Australian black bean tree. The leaves represent seven morphotypes, which include Fabaceae but are otherwise unidentifiable. One specimen preserves in situ cuticle. The palynoflora includes diverse ferns and palms, Typhaceae, Onagraceae, and forest taxa, including Podocarpaceae, Sapindaceae, and Fabaceae, indicating a largely freshwater coastal swamp environment in the lower Tambak Member.Conclusions. The Jantungspermum seeds are double the length of Castanospermum seeds, representing a closely related but extinct papilionoid taxon. The discovery suggests a Sundan precollision history, a much later Sunda-Sahul migration, and an eventual Asian extinction for the Castanospermum lineage, which today inhabits coastal rainforests of northern Australasia. The seeds represent the only known fossil relative of Castanospermum, the oldest legume fossils from Malesia, and one of the largest fossil angiosperm seeds. The new seeds, leaves, and palynomorphs provide a window into Eocene Malesian vegetation and rare macrofossil evidence of Sundan history for a living Australasian lineage. 
    more » « less
  9. The most common macrofossils in the highly diverse flora from Laguna del Hunco (early Eocene of Chubut, Argentina) are “Celtis” ameghinoi leaves, whose true affinities have remained enigmatic for a century. The species accounts for 14% of all plant fossils in unbiased field counts and bears diverse insect-feeding damage, suggesting high biomass and paleoecological importance. The leaves have well-preserved architecture but lack cuticles or reproductive attachments. We find that the fossils only superficially resemble Celtis and comparable taxa in Cannabaceae, Ulmaceae, Rhamnaceae, Malvaceae, and many other families. However, the distinctive foliar morphology conforms in detail to Dobinea (Anacardiaceae), a genus with two species of shrubs and large herbs ranging from India’s Far East and Tibet to Myanmar and central China, and we propose Dobineaites ameghinoi (E.W. Berry) gen et. comb. nov. for the fossils. This discovery strengthens the extensive biogeographic links between Eocene Patagonia and mainland Asia, provides the first fossil record related to Dobinea, and represents a rare Gondwanan macrofossil occurrence of Anacardiaceae, which was widespread and diversified in the Northern Hemisphere at the time. The diverse leaf architecture of Anacardiaceae includes several patterns usually associated with other taxa, and many other leaf fossils in this family may remain misidentified. 
    more » « less
  10. The Río Pichileufú (RP) fossil locality contains one of Patagonia’s only well-dated middle Eocene floras, deposited ca. 47.7 Ma during the onset of global temperature decline and South America's tectonic isolation. In 1938, Edward W. Berry described 135 species from RP based on compressed angiosperm leaves and rare reproductive structures. The flora was considered highly diverse and to have predominantly Neotropical affinities; however, many of Berry’s identifications were botanically incorrect, confusing interpretations of composition, diversity, and biogeography. Only a fraction of the flora has been studied since, and substantial new collections have remained unevaluated. Here, we reassess the fossil leaves from RP, creating a stable platform for systematic and ecological analyses. We use a morphotype approach to bypass the numerous prior taxonomic errors, while preserving nomenclatural links to specimens. We jointly consider the type and cohort (n = 696) and recent (n = 1286) collections. We validate 82 leaf morphotypes in the type collections, much lower than Berry’s estimate of 131, and consider 43 species as indeterminate. We find that 44 historical species were improperly split, lumped, or misaligned to existing names. At least 12 plant families and 30 plant genera initially reported from the site are unreliable, including Poaceae, Cannabaceae, Ericaceae, Hydrangeaceae, and Rosaceae. However, considering all the collections, we recognize 158 total leaf morphotypes. Reliable taxa include ginkgophytes, Norfolk Island pines (Araucaria), legumes (Fabaceae), soapberries (Sapindaceae), and laurels (Lauraceae). Although Berry's initial assessment of diversity at RP was significantly overestimated, including new material re-establishes the flora as exceptionally diverse. 
    more » « less